Differential Privacy has Bounded Impact on Fairness in Classification Paul Mangold*^{†1}, Michaël Perrot¹, Aurélien Bellet¹, and Marc Tommasi¹ ¹Machine Learning in Information Networks – Inria Lille - Nord Europe, Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 – France ## Abstract We theoretically study the impact of differential privacy on fairness in classification. We prove that, given a class of models, popular group fairness measures are pointwise Lipschitz-continuous with respect to the parameters of the model. We use this Lipschitz property to prove a high probability bound showing that, given enough examples, the fairness level of private models is close to the one of their non-private counterparts. Keywords: Fairness, Differential Privacy, Classification, Machine Learning ^{*}Speaker [†]Corresponding author: paul.mangold@inria.fr