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NGS technologies

The recent Next Generation Sequencing (NGS) technologies are
becoming the mostly used tools to study gene expression.
RNA-Seq experiments: quantification of the transcriptome.

Before their advent, the expression level of a target genome was
measured through microarray technologies;
NGS experiments: wider range of expression levels, cheaper and
faster experiments.

Microarray technologies: data are measured as fluorescence
intensity→ continuous real data;

NGS experiments: read counts assigned to a target genome→
discrete measurements
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Differential analysis

RNA-Seq: a target gene or exon
two (or more) biological conditions: disease states, treatments etc.
comparison of the read counts of a genome region between the
conditions
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Data structure and notation

Yijr is the random variable that expresses the read counts mapped to:
gene i (i=1, . . . ,p),
in condition j (j = 1, . . . ,d ; here d = 2 w.l.o.g),
in sample r (r= 1, ...,nj ),

p is large but nj is small,
sometimes: excess of zeros,
’overdispersion’, i.e. the variance usually exceeds the mean.

The data have a hierarchical structure. Borrowing the terminology of
multilevel models we have:

1 first-level units: the replicates
2 second level: the conditions
3 third level: the ’genes’
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Dealing with count data

Modeling nonnegative count data:

Poisson distribution: the benchmark for count data, simple but
imposes equidispersion (not adequate);

Zero-inflated Poisson (ZIP): often used, it allows to model
over-dispersion due to excess of zeros, but it does not have an
explicit parameter for variance;

Negative binomial distribution (NB): two parameters, a mean and
a dispersion parameter (→ flexibility, overdispersion);

Zero-inflated Negative binomial distribution (ZINB): empirical
results proved that the difference in fit between ZINB and NB is
usually trivial (”Do we really need zero-inflated models?” by P. Allison);
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The NB distribution
Y ∼ NegBin(λ, α)

f (y |λ, α) =
(

y + α− 1
α− 1

)(
λ

λ+ α

)y ( α

λ+ α

)α
with: E(Y) = λ Var(Y) = λ

(
1 +

1
α
λ

)

Two opposite strategies:
a common dispersion parameter→ not realistic

Yijr ∼ NegBin(λij , α)

p gene-specific dispersion parameters→ estimation difficulties
because of the limited number of replicates (p large, nj small)

Yijr ∼ NegBin(λij , αi)
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Estimating the dispersion parameters

Some solutions in the statistical literature that assume the NB
probability model:

Robinson and Smyth (2007) - edgeR: maximizes a weighted
combination of the conditional log-likelihoods with per-gene dispersion
and of the conditional log-likelihood with common dispersion;

Anders and Huber (2010) - DESeq: allows specifications of
separate variances for genes and conditions and models the variances
as smooth functions of the expected values through local regression;
Hardcastle and Kelly (2010) - baySeq: same model as edgeR but it
considers non-parametric priors on sets of parameters and it maximizes
per-gene integrated quasi-likelihood (computational intensive)
Wu et al (2013) - DSS: a shrinkage estimator imposing a log-normal
prior on the dispersion parameters (Bayesian hierarchical model).

Klambauer et al (2013) - DEXUS: it assumes a mixture of d NBs for
all the genes where the parameters are condition-specific, where each
component is an (unkown) condition
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Our proposal and outline

Instead of fitting p NB models, we assume a mixture model with
component-specific dispersion (and gene-specific means):

sharing information among genes that exhibit similar dispersion
an intermediate solution between the trade-off common vs
gene-specific dispersion

Theory for a statistical testing procedure is then developed within
the model based clustering framework
Through a wide simulation study we will show that the proposed
approach is the best one in reaching the nominal value for the
first-type error, while keeping elevate power
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Our proposal

The NB parametrization can be derived from a Poisson-Gamma mixed
model:

U ∼ Gamma(α, α)y
Y |U = u ∼ Pois(λu)

It can be proved that Y is marginally distributed according to:

Y ∼ NegBin(λ, α).
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The proposal

We assume that:

f (ui) =
K∑

k=1

wk fk (ui) =
K∑

k=1

wk

d∏
j=1

nj∏
r=1

Gamma(uijr ;αk , αk ),
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Mixtures of NB

Therefore the hierarchical structure becomes:

Zi ∼ Multinom(1,w) where w = (w1, ...,wK )y
Uijr |Zik = 1 ∼ Gamma(αk , αk )y

Yijr |Uijr = uijr ∼ Pois(λijuijr )

Marginalizing with respect to U and Z:

Yi ∼
∑

k

wk

d∏
j=1

nj∏
r=1

NegBin
(
yijr ;λij , αk

)
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Estimation

Let θ = {λij ,wk , αk}i=1,...p;j=1,...,d ;k=1,...,K be the whole set of model
parameters.
The log-likelihood of the model is given by

ln L(θ) = ln
p∏

i=1

K∑
k=1

wk

d∏
j=1

nj∏
r=1

NegBin(yijr ;λij , αk )

A direct maximization of ln L(θ) is not analytically possible, but the
maximum likelihood estimates can be derived by the EM algorithm:

arg max
θ

Ez,u|y;θ′ [ln Lc(θ)] = arg max
θ

Ez,u|y;θ′ [ln f (y,u, z|θ)]

which leads to iterating the E and M steps until convergence.
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EM algorithm

By evaluating the score function of Ez,u|y;θ′ at zero, with respect to
each parameter of the model we get:

λ̂ij =

∑
r yijr

nj

the estimates for αk are not in closed-form therefore we will use
quasi-Newton algorithms to find the root of the score equation:

∂

∂αk

∫ +∞

0

K∑
k=1

p∑
i=1

d∑
j=1

nj∑
r=1

ln f (uijr |zi)f (uijr , zi |yi)duijr = 0

ŵk =

∑
i f (zi |yi)

p
.
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Three test statistics for differential analysis

Differential analysis: statistical testing to decide whether, for a given
gene, an observed difference in read counts between two biological
conditions is significant or if it is just due to natural random variability.

Different ways to accomplish this aim:

H0 : λi1 − λi2 = 0

H0 :
λi1

λi2
= 1

H0 : ln
λi1

λi2
= ln(λi1)− ln(λi2) = 0
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Difference test statistic

H0 : λi1 − λi2 = 0

λ̂i1 − λ̂i2√
Var(λ̂i1 − λ̂i2)

|H0  N(0,1)

Var(λ̂i1 − λ̂i2) = Var(λ̂i1) + Var(λ̂i2)

Var(λ̂ij) = Var
(∑nj

r=1 yijr
nj

)
= 1

n2
j
njVar(yijr )

Var(yijr ) = E [Var(yijr |zik = 1)] + Var [E(yijr |zik = 1)]

and for E [Var(yijr |zik = 1))] we consider the conditional
expectation given the observed data

Var(yijr ) = Ezi |yi
[Var(yijr |zik = 1)] = λ̂ij

(
1 +

∑
k

f (zik |yi)

α̂k
λ̂ij

)
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Ratio test statistic

H0 : λi1
λi2

= 1

λ̂i1
λ̂i2
− 1√

Var
(
λ̂i1
λ̂i2

) |H0  N(0,1)

using Delta method:

Var

(
λ̂i1

λ̂i2

)
≈ Var(λ̂i1)

E(λ̂i2)2
+

E(λ̂i1)
2

E(λ̂i2)4
Var(λ̂i2)
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Log Ratio test statistic

H0 : ln λi1
λi2

= ln(λi1)− ln(λi2) = 0

ln λ̂i1 − ln λ̂i2√
Var(ln λ̂i1 − ln λ̂i2)

|H0  N(0,1)

Var(ln λ̂i1 − ln λ̂i2) = Var(ln λ̂i1) + Var(ln λ̂i2)

Var(ln λ̂ij) = Var
(

ln
(∑

r yijr
nj

))
= Var(ln(

∑
r yijr ))

through the Delta method: Var(ln(
∑

r yijr )) =
1

(
∑

r yijr )2 njVar(yijr )
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Simulation A

Evaluating the capability of the proposed mixture model to estimate
the variances of the genes as K increases.

A set of H = 100 datasets with:
d = 2 conditions
n1 = n2 = 5 replicates
p = 300 genes:

1
3 genes DE (λi1 6= λi2)
λi1 ∼ Unif (0,250) , λi2 = λi1

eφi
where φi ∼ N(µ = 0.5, σ = 0.125)

2
3 genes not DE (λi1 = λi2)
λi1 = λi2 ∼ Unif (0,250)

αi ∼ Unif (0.5,600) (i = 1, . . . ,p)

C. Viroli Mixtures of NB for modelling overdispersion in RNA-Seq data April, 3rd 2015 18



Simulation A

Evaluating the capability of the proposed mixture model to estimate
the variances of the genes as K increases.

A set of H = 100 datasets with:
d = 2 conditions
n1 = n2 = 5 replicates
p = 300 genes:

1
3 genes DE (λi1 6= λi2)
λi1 ∼ Unif (0,250) , λi2 = λi1

eφi
where φi ∼ N(µ = 0.5, σ = 0.125)

2
3 genes not DE (λi1 = λi2)
λi1 = λi2 ∼ Unif (0,250)

αi ∼ Unif (0.5,600) (i = 1, . . . ,p)

C. Viroli Mixtures of NB for modelling overdispersion in RNA-Seq data April, 3rd 2015 18



Simulation A

Average of the relative
errors in absolute values
across the 100 datasets
between the estimated
variances and the true
ones as K varies.
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Simulation A

Average of the relative
errors in absolute values
across the 100 datasets
between the estimated
variances and the true
ones as K varies.
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Simulation A
Comparison with the others

Comparison with Robinson et al 2010 (edgeR package), Anders and Huber
2010 (DESeq package), Wu et al 2013 (DSS package)

Relative distances
between the estimated
variances and the true
ones (across the 100
datasets).
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Simulation B

Evaluation of the adequateness of the statistical procedure: by
observing the approximation of the empirical first-type error towards
the nominal significance level under the null hypothesis as the number
of replicates increases.

The same simulation design presented before: d = 2 conditions, 100
genes DE (λi1 6= λi2), 200 genes not DE (λi1 = λi2), αi ∼ Unif (0.5,600)

with:

H = 1000 datasets;

a varying number of replicates nj = 3,5,10;

K = 3 components

Comparison with Robinson et al 2010 (edgeR package), Anders and Huber
2010 (DESeq package), Wu et al 2013 (DSS package)
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Simulation B
First-type errors

Confidence level= 0.05

Test statistic: Difference
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Simulation B
First-type errors

Confidence level= 0.05

Test statistic: Ratio
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Simulation B
First-type errors

Confidence level= 0.05

Test statistic: Log - Ratio
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Simulation B
First-type errors

Confidence level= 0.01

Test statistic: Difference
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Simulation B
First-type errors

Confidence level= 0.001

Test statistic: Difference
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Simulation B
First-type errors

Confidence level= 0.001
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Simulation B
First-type errors

Confidence level= 0.001

Test statistic: Log - Ratio
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Simulation B: Empirical first-type errors as a function
of the real dispersion parameters αi .
1st type errors and real αi - edgeR

Confidence level= 0.05
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Simulation B
1st type errors and real αi - DSS

Confidence level= 0.05
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Simulation B
1st type errors and real αi - Difference

Confidence level= 0.05
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Simulation B
1st type errors and real αi - Ratio

Confidence level= 0.05
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Simulation B
1st type errors and real αi - Log Ratio

Confidence level= 0.05
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Simulation B
ECDF of the null p-values

The capability of controlling the first-type error can be checked also by
looking at the empirical cumulative density function (ECDF) of the null
p-values;

the closer their distribution is to the diagonal, the better is the
approximation to the uniform distribution, as requested by the
probability integral transform theorem.
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Simulation B
ECDF of the null p-values

Test statistic: Difference
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Simulation B
ECDF of the null p-values

Test statistic: Ratio
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Simulation B
ECDF of the null p-values

Test statistic: Log - Ratio
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Application to prostate cancer data
The dataset

RNA-seq data on prostate cancer cells, two conditions:
1 treated with androgens (nj = 3 patients)
2 control (inactive compound) (nj = 4 patients)

37435 genes were sequenced; for the analysis we have considered
the p = 16424 genes with mean count greater than 1.

Androgen hormones: stimulate some genes
have a positive effect in curing prostate
cancer cells

⇒ Differential analysis: investigation of the connection between these
stimulated genes and survival of these cells
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Application to prostate cancer data
The dataset

Preliminaries: the data have been normalized in order to account for
possible technical biases and for the gene lengths.

The dataset:

Genes Control group Treatment group
lane1 lane2 lane3 lane4 lane5 lane6 lane8

ENSG00000124208 766 934 698 782 392 651 560
ENSG00000182463 19 12 13 12 20 23 26
ENSG00000124201 192 205 223 203 215 167 130

...
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Application to prostate cancer data
Analysis and results

The proposed NB mixture model has been fitted on the data with
a number of components K ranging from 1 to 6
⇒ Information criteria (AIC, BIC): K = 3.

Differential expression analysis has been conducted by computing
the three proposed test statistics and also using the DESeq,
edgeR and DSS methods implemented in R using the default
settings.

Acc. level =
num. of genes jointly declared DE

average (num. of genes marginally declared DE)
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Application to prostate cancer data
Analysis and results

Difference test statistic
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Application to prostate cancer data
Analysis and results

Ratio test statistic
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Application to prostate cancer data
Analysis and results

Log Ratio test statistic
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Conclusions

The proposed mixture of Negative Binomials is a new way for
sharing information among genes about their dispersion levels,
and to gain a more accurate estimation of the variances;

Three different statistical tests have been proposed, compared
and investigated in a wide simulation study;
The simulation study results show that the proposed test statistics
are the only ones that actually reach the nominal values for the
first-type errors (and they are good also in restraining the
second-type ones).
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First type errors (mean and SD)
Confidence level= 0.05

Statistic nj = 3 nj = 5 nj = 10
Difference 0.0392 (0.0356) 0.0483 (0.0273) 0.0505 (0.0213)
Ratio 0.0418 (0.0351) 0.0501 (0.0267) 0.0516 (0.0211)
Log Ratio 0.0395 (0.0366) 0.0485 (0.0278) 0.0506 (0.0217)
DESeq 0.0143 (0.0242) 0.0172 (0.0206) 0.0201 (0.0187)
edgeR 0.0337 (0.0454) 0.0333 (0.0335) 0.0346 (0.0229)
DSS 0.0380 (0.0624) 0.0352 (0.0499) 0.0293 (0.0318)
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First type errors (mean and SD)
Confidence level= 0.01

Statistic nj = 3 nj = 5 nj = 10
Difference 0.0107 (0.0179) 0.0121 (0.0134) 0.0119 (0.0098)
Ratio 0.0135 (0.0197) 0.0146 (0.0142) 0.0131 (0.0104)
Log Ratio 0.0110 (0.0190) 0.0123 (0.0138) 0.0120 (0.0100)
DESeq 0.0036 (0.0111) 0.0034 (0.0072) 0.0037 (0.0061)
edgeR 0.0102 (0.0252) 0.0085 (0.0155) 0.0074 (0.0085)
DSS 0.0128 (0.0382) 0.0102 (0.0260) 0.0066 (0.0125)
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First type errors (mean and SD)
Confidence level= 0.001

Statistic nj = 3 nj = 5 nj = 10
Difference 0.0031 (0.0086) 0.0025 (0.0047) 0.0021 (0.0032)
Ratio 0.0045 (0.0105) 0.0037 (0.0063) 0.0026 (0.0039)
Log Ratio 0.0033 (0.0092) 0.0027 (0.0051) 0.0021 (0.0034)
DESeq 0.0012 (0.0053) 0.0007 (0.0023) 0.0005 (0.0012)
edgeR 0.0032 (0.0126) 0.0018 (0.0058) 0.0012 (0.0024)
DSS 0.0048 (0.0211) 0.0032 (0.0117) 0.0013 (0.0038)
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Second type errors (mean and SD)
Confidence level= 0.05

Statistic nj = 3 nj = 5 nj = 10
Difference 0.1582 (0.2738) 0.1002 (0.2267) 0.0543 (0.1455)
Ratio 0.2112 (0.3259) 0.1304 (0.2812) 0.0764 (0.2046)
Log Ratio 0.1569 (0.2726) 0.0991 (0.2246) 0.0534 (0.1443)
DESeq 0.1987 (0.3007) 0.1196 (0.2568) 0.0642 (0.1809)
edgeR 0.1444 (0.2526) 0.0945 (0.2197) 0.0529 (0.1533)
DSS 0.1354 (0.2449) 0.0892 (0.2109) 0.0513 (0.1526)
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Second type errors (mean and SD)
Confidence level= 0.01

Statistic nj = 3 nj = 5 nj = 10
Difference 0.2341 (0.3289) 0.1442 (0.2867) 0.0874 (0.2199)
Ratio 0.3336 (0.3874) 0.1897 (0.3334) 0.1146 (0.2775)
Log Ratio 0.2331 (0.3278) 0.1430 (0.2845) 0.0856 (0.2167)
DESeq 0.3141 (0.3472) 0.1755 (0.3102) 0.0980 (0.2462)
edgeR 0.2268 (0.2997) 0.1384 (0.2740) 0.0815 (0.2170)
DSS 0.2159 (0.3014) 0.1357 (0.2710) 0.0813 (0.2181)
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Second type errors (mean and SD)
Confidence level= 0.001

Statistic nj = 3 nj = 5 nj = 10
Difference 0.3441 (0.3703) 0.2037 (0.3345) 0.1228 (0.2834)
Ratio 0.5075 (0.3996) 0.2889 (0.3847) 0.1545 (0.3260)
Log Ratio 0.3433 (0.3693) 0.2026 (0.3333) 0.1212 (0.2799)
DESeq 0.4873 (0.3635) 0.2620 (0.3572) 0.1382 (0.3016)
edgeR 0.3609 (0.3359) 0.2066 (0.3193) 0.1166 (0.2753)
DSS 0.3508 (0.3471) 0.2061 (0.3230) 0.1176 (0.2758)
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AUC (adjusted p-values; average on the H= 1000 datasets)

nj = 3 nj = 5 nj = 10
Difference 0.950 0.968 0.986

Ratio 0.936 0.959 0.981
Log Ratio 0.951 0.968 0.986

DESeq 0.952 0.970 0.986
edgeR 0.956 0.972 0.987

DSS 0.958 0.974 0.988
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